Machine Learning for Dialog State Tracking: a Review
نویسنده
چکیده
Spoken dialog systems help users achieve a task using natural language. Noisy speech recognition and ambiguity in natural language motivate statistical approaches that model distributions over the user’s goal at every step in the dialog. The task of tracking these distributions, termed Dialog State Tracking, is therefore an essential component of any spoken dialog system. In recent years, the Dialog State Tracking Challenges have provided a common testbed and evaluation framework for this task, as well as labeled dialog data. As a result, a variety of machine-learned methods have been successfully applied to Dialog State Tracking. This paper reviews the machine-learning techniques that have been adapted to Dialog State Tracking, and gives an overview of published evaluations. Discriminative machine-learned methods outperform generative and rule-based methods, the previous state-of-the-art.
منابع مشابه
Hybrid Dialog State Tracker
This paper presents a hybrid dialog state tracker that combines a rule based and a machine learning based approach to belief state tracking. Therefore, we call it a hybrid tracker. The machine learning in our tracker is realized by a Long Short Term Memory (LSTM) network. To our knowledge, our hybrid tracker sets a new state-of-the-art result for the Dialog State Tracking Challenge (DSTC) 2 dat...
متن کاملDialog state tracking, a machine reading approach using Memory Network
In an end-to-end dialog system, the aim of dialog state tracking is to accurately estimate a compact representation of the current dialog status from a sequence of noisy observations produced by the speech recognition and the natural language understanding modules. A state tracking module is primarily meant to act as support for a dialog policy but it can also be used as support for dialog corp...
متن کاملThe Second Dialog State Tracking Challenge
A spoken dialog system, while communicating with a user, must keep track of what the user wants from the system at each step. This process, termed dialog state tracking, is essential for a successful dialog system as it directly informs the system’s actions. The first Dialog State Tracking Challenge allowed for evaluation of different dialog state tracking techniques, providing common testbeds ...
متن کاملA Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking Challenge: On the believability of observed information
This paper presents a generic dialogue state tracker that maintains beliefs over user goals based on a few simple domainindependent rules, using basic probability operations. The rules apply to observed system actions and partially observable user acts, without using any knowledge obtained from external resources (i.e. without requiring training data). The core insight is to maximise the amount...
متن کاملExtrinsic Evaluation of Dialog State Tracking and Predictive Metrics for Dialog Policy Optimization
During the recent Dialog State Tracking Challenge (DSTC), a fundamental question was raised: “Would better performance in dialog state tracking translate to better performance of the optimized policy by reinforcement learning?” Also, during the challenge system evaluation, another nontrivial question arose: “Which evaluation metric and schedule would best predict improvement in overall dialog p...
متن کامل